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Cryptography: A Tutorial 
for Power Engineers 

David Whitehead P.E., and Rhett Smith GSEC CISSP, Schweitzer Engineering Laboratories, Inc. 

Abstract—Safeguarding power system communications 
channels from unauthorized use or access is becoming 
increasingly important. Internal and external utility 
organizations have suggested many cryptographic solutions as 
the proper ways to secure substation communications links. 
However, many proposed solutions are not practical for 
substation applications because of communications channel 
limitations, data size and/or data rate requirements, intelligent 
electronic devices (IED) capabilities, or similar infrastructure 
constraints. 

This paper is a cryptographic tutorial that addresses methods 
for protecting communications systems that will enable 
protection engineers to work more effectively with other 
departments within a utility.  

This paper discusses common cryptographic techniques that 
are applicable in various substation communications systems. 
The paper then describes the benefits and limitations of these 
methods. Specific topics include: 

1. Overview of communications channels used in power 
systems. 

2. Review of cryptographic protocols and how they work. 
3. How cryptography can impact monitoring, control, 

and protection communications. 
4. Differences between substation communications 

systems and corporate information technology (IT) 
systems. 

5. Cryptographic impact to operations. 

I.  INTRODUCTION 
Cryptography—just the sound of the word can bring as 

much confusion as the science behind it brings to the 
information that it is trying to protect. Cryptography is the 
science of hiding information. This science has expanded far 
beyond the goal of keeping the data confidential: now it 
includes checking integrity and authenticating both the data 
and the sender. As with all engineering tasks, you must weigh 
the tradeoffs before selecting the appropriate cryptographic 
technology for your application. When selected correctly, 
cryptography can enable an organization to do many tasks 
more efficiently and effectively. In a way, cryptography can 
help you do twice the work in half the time. 

II.  POWER SYSTEM COMMUNICATION 
Electric power system communications are diverse, to say 

the least. Fig. 1 shows typical electric utility communications 
links.  
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Fig. 1. Electric utility communications links 

Some examples of electric utility communications links 
include: 

• Radio frequency (RF) 
• Dedicated fiber 
• Ethernet 
• Public telephone 
• Telecommunications networks 

These communications links are used to perform three 
primary functions: 

• Real-time protection 
• SCADA 
• Engineering access 

Real-time protection communication transfers information 
used to control the electric power system. Real-time protection 
data payloads range from a few bytes for pilot protection to a 
few hundred bytes for line current differential protection. Data 
exchanged between protection devices are very timely: 
devices must receive new data in milliseconds. Real-time 
protection is typically point-to-point, and no request is 
necessary to send protection information to the receiving end. 
Even IEC 61850 GOOSE is a subscription architecture where 
devices receive control data without request. 

The time value of the data is short lived because the value 
of a current measurement is valid only for that particular 
instant. 

The timing for SCADA communication is less strict: 
update rates range from hundreds of milliseconds to minutes. 
Usually, SCADA communication consists of a poll/response 
format. Typical electric utility SCADA protocols are DNP3, 
Modbus®, and IEC 61850. 

Engineering access provides retrieval of event reports, 
access to fault locations, change settings, and other similar 
activities. Timing is generally not critical; if a relay responds 
to a request in 1.05 seconds instead of 1.00 seconds, the user 
would be hardly aware of the 50 ms delay. This is in contrast 
to real-time protection delay, where 50 ms could have a severe 
impact on power system stability. The time value of the data is 
longer lived because settings, event reports, and the like can 
have a long life. 

Many utilities are moving communications systems to 
Ethernet/IP or SONET. However, there are and will continue 
to be many electric utility communications links that are serial 
based. For the purpose of this paper, serial networks have data 
rates from 300 bits per second (bps) to 115,200 bps. Most 
serial networks in electric utility systems operate between 
1200 bps and 9600 bps. 

Serial communications system protocols (such as Modbus, 
DNP3, and MIRRORED BITS®) and architectures were designed 
many years ago. These systems were developed to be reliable 
and dependable but not necessarily secure in a cryptographic 
sense. At the time of development for most serial protocols in 
common use in the United States, utilities assumed that these 
protocols were integrated into trusted networks—additional 
data security was never a concern. 

As we rely more and more on automation, it is imperative 
that we secure all utility communications. However, adding 
cryptographic security to existing communications links is a 
challenge. The largest challenge is finding the additional 
bandwidth that the cryptographic functionality needs. 
Cryptography will consume some bandwidth and add latency 
to a communications link. The impact of bandwidth 
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consumption or data latency will vary according to the 
communications link and the type of cryptography selected. 
For example, engineering access communications links are not 
time sensitive, so adding cryptographic mechanisms does not 
adversely impact the use of these data. However, when we add 
cryptography to real-time protection or SCADA data, 
bandwidth and data latency are major concerns. 

Cryptographic algorithms and schemes generally require 
additional channel bandwidth in order to keep frames 
synchronized and to provide the basis for frame security. The 
additional bandwidth is for items such as initial values and 
counters. These additions can adversely impact bandwidth-
limited communications systems. Engineers have designed 
their real-time protection and SCADA communications 
systems to take full advantage of the available 
communications channel bandwidth. For example, in a 
SCADA system, assume that there is a master that polls slave 
devices. A typical baud rate for an installed system is 
9600 bps, using 8 data bits, no parity, and 1 stop bit (9600 bps, 
8, N, 1). For a Modbus poll/request session, an analog value 
request is 8 bytes, and a slave response is 192 bytes. The total 
number of bytes per poll/response is 200 bytes. If we use the 
baud rate stated above, the total single poll/response time for 
the transaction is 208 ms. Allowing for some processing 
delay, the master could poll 9 slaves in about 2.1 seconds. 
This would leave approximately 228 ms of total idle time 
(required bandwidth: 0.208 x 9 = 1.872 seconds; idle time: 
2.1 – 1,872 = 0.228 seconds or about 11 percent of the total 
channel bandwidth in an idle state). In order to provide data 
security and not disrupt the existing polling-cycle scheme, the 
cryptographic overhead must use less than 11 percent of the 
available channel bandwidth. The following sections discuss 
cryptography and how it can be applied to protect these 
communications links. 

III.  CRYPTOGRAPHY 
Let us start by identifying the goals of cryptography: 

confidentiality, integrity, and availability (CIA). 
1. Confidentiality: Concealing information from 

unintended viewers. Encryption scrambles 
information by using known algorithms and secret 
keys to make information incomprehensible to 
unintended users. It is best to use encryption 
algorithms approved by the National Institute of 
Standards and Technology (NIST) to ensure 
mathematical robustness. There are two types of key 
structures in encryption algorithms: symmetric key 
and asymmetric key. In symmetric key cryptography, 
the two parties who want to exchange information 
securely use the same algorithm and the same secret 
key to encrypt and decrypt. Symmetric cryptography 
is computationally efficient, but it requires that each 
sender/receiver pair has a unique, secret key. The 
operational difficulty in this is how the sender and 
receiver initially agree on a secret key. If the 
communications channel is untrusted, passing a 
symmetric encryption key needs an out-of-band 

transport solution. Asymmetric key cryptography uses 
two keys: public and private. In this system, the public 
key is known to everyone. The private key is a secret, 
and the private key owner never shares it with anyone. 
If two parties need to exchange information securely, 
the sender uses the receiver’s public key to encrypt the 
message, and the receiver uses the private key to 
decrypt the message. Asymmetric cryptography is 
much more computationally burdensome, but it does 
not have the initial key distribution problem that 
symmetric keys have. The receiver can send a public 
key to everyone without worry of it being 
eavesdropped. Modern cryptographic systems use a 
hybrid approach that uses asymmetric key 
cryptography to send symmetric keys. This solves the 
initial symmetric key exchange problem and allows 
the use of symmetric encryption for the information 
transfer, leveraging the speed of symmetric key 
cryptography. 

2. Integrity: Ensuring information has not been tampered 
with or altered. Integrity checking is usually 
accomplished by running information through a 
cryptographic algorithm, called a hash, and appending 
the hash to the end of the data message. When the 
receiver gets the message from the sender, the receiver 
reruns the data portion of the message through the 
same hash algorithm to create a calculated hash. If 
both the calculated and received hashes match, the 
receiver can be assured the data were not altered. The 
hash algorithm can be used with or without a secret 
key. 

3. Availability: Ability to use information when it is 
needed or desired. When you need a resource, you 
want it to be there, a requirement similar to that for 
power system protection communications channels. 
The most common cyberthreat is a Denial-of-Service 
(DoS) attack, where a third party disrupts or otherwise 
makes the communications media unavailable. 

Confidentiality conceals and protects information from 
anyone who is not the intended receiver. This keeps the data 
confidential or indecipherable, scrambled in such a way that 
no one except the intended receiver can understand the 
information. Past methods used physical concealment of a 
message. One ancient Roman example involved shaving the 
head of a messenger, tattooing the message on the head, and 
then letting the hair grow back. The intended receiver knew to 
shave the hair of the messenger to read the message. A faster 
method of physical encoding was the scytale, a message 
written on a long strip of cloth that, once wrapped around a 
specific pole of the correct diameter, would reveal the 
message. More recent encryption techniques used alphabetic 
replacement methods to conceal the message. In a simple 
example, the sender replaces every A with a Z, and the 
intended receiver knows to replace all Zs with As. Alphabetic 
replacement took on many forms, each more complicated than 
the next, to protect against cracking or unintended receivers 
breaking the decryption method and understanding the 
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transmitted information. Today, cryptography is based on 
mathematical permutation and substitution. 

It is important to investigate many factors before selecting 
the most appropriate cryptographic solution for your system. 
The most important first step is to select NIST-approved 
algorithms, but knowing that a solution claims 256-bit 
Advanced Encryption Standard (AES) encryption does not 
ensure that it will protect your information correctly. 

Implementation architectures are just as important. There 
are many different encryption implementation methods. 
Identifying the most appropriate method for your network is 
critical. 

A.  Confidentiality 
Confidentiality, or encryption, hides the content of a data 

message from unauthorized viewers. For the purposes of this 
discussion, we will assume that the data exchanged in a real-
time protection system, SCADA system, or engineering access 
are digital. Encryption of digital data will be kept simple in 
this example: a data message is XOR with a secret key only 
known by the sender and receiver of the message. For 
example, if we want to encrypt the ASCII character for 1 with 
a secret key represented by an ASCII character for 7, the result 
would be: 

ASCII Char Secret Key Result 
00110001 00110111 00000110 

The most important part of the above encryption process is 
using key material that can keep the data secure. Two 
examples to illustrate the importance of selecting the right 
encryption architecture to generate this key material are 
electronic codebook (ECB) and counter mode (CTR). 

ECB is very fast, and much of the encryption process can 
be precomputed. The drawback is that for every given block 
of information there is one encrypted output. This is bad if the 
information you are sending is often repeated, as in a control 
system command response environment. 

CTR mode seeds the key algorithm with a count that 
changes, which results in a different encryption key. Even if 
information is sent repeatedly, the encrypted output is 
different as long as the count does not repeat. 

Table I shows examples of implementation methods and a 
few of their advantages and disadvantages. 

A stream or block cipher denotes how much data are 
processed at any one time, which results in a requirement of 
how much data need to be received before calculations can 
start. The second column in Table I shows whether any 
calculations can be done in advance of receiving data. The 
more calculations that can be done in advance, the lower the 
impact cryptographic functions have on your real-time 
processing. Advance calculations speed up the encryption or 
decryption process. Lastly, does an error in one of the sent 
messages cascade and corrupt following messages? If a mode 
has “No” in the Cascading Errors column, there will be 
corruption in the current message, but these errors will not 
carry over to the next message. 

TABLE I 
COUNTER MODE IMPLEMENTATION EXAMPLES 

Modes Stream/Block 
Cipher 

Advanced 
Work 

Cascading 
Errors 

Electronic Code 
Book 

Block Yes No 

Output 
Feedback 

Stream Yes Yes 

Cipher Feedback Stream Partial No 

Cipher Block 
Chaining 

Block Partial No 

Counter Stream Yes No 

Another concept that must be investigated can be summed 
up in the term key space. Key space is all the possible keys the 
system can have. If an alphabetic encryption system has a 
code word to encipher and decipher messages, the key space is 
all possible letter combinations that code word may be. A 
four-letter code word number of possibilities is easier to break 
than a ten-letter code word number of possibilities. For data, 
the key space is 2n possibilities where n is the number of bits 
long the key is. For example, if you have a 128-bit key, there 
are 2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456 
possibilities. It would take a computer with a 2.5 GHz 
processor 4.316 x 1021 years to guess the correct key if the 
processor could have a new guess on every clock cycle and 
guessed the correct key on the last guess. 

Computer processing power doubles every two years. 
Applying this fact to control system equipment that may be 
installed for ten years shows that the key space must be strong 
enough to protect against computers running 80 GHz 
processors. Looking again at the 128-bit key example, we see 
that it would take an 80 GHz computer 1.349 x 1020 years to 
break the key under the same assumptions. This shows us that 
selecting a key space of 128 bits or greater is appropriate. 

Let us dig a little deeper into the structures of stream 
ciphers and block ciphers. Stream ciphers encrypt or decrypt 
information one digit at a time, while block ciphers combine 
multiple digits to perform encryption functions on all 
information at once. In real-time systems, it may not be 
acceptable to wait for larger blocks of data on a serial line to 
collect before encryption functions can start, whereas 
engineering access may be tolerant of the additional latency. 
This makes stream ciphers attractive for control system 
applications. However, stream ciphers may be susceptible to 
man-in-the-middle attacks. These types of attacks occur when 
attackers know the original message that is being sent (such as 
a DNP3 trip command) and also know what they want to 
change the message to (such as a DNP3 close command). As 
illustrated in Fig. 2, these attacks are simple to perform if the 
stream cipher does not include some sort of man-in-the-middle 
attack prevention.  
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Fig. 2. Man-in-the-middle attack 

Let us take a closer look at how someone might accomplish 
this attack. We use a small data string to show the attack more 
clearly, but we can scale the principles of the process to any 
size of information. Suppose we want to send the ASCII letter 
A, which in binary is 01000001, and the attacker wants to 
change it to the ASCII letter Z, which in binary is 01111010. 
The original sender encrypts 01000001 with a secret key 
10001011. For example purposes, we will XOR the data to 
encrypt and decrypt, so the cipher text would be: 

 A:  01000001 
 Key:  10001011 
 Cipher Text:  11001010 
Under this attack, we assume that the attackers know the 

original message being sent, A, the message they want to 
send, Z, and that the attackers need only to capture the 
transmitted cipher text, 11001010. Here are the steps to 
successfully achieve this attack: 

1. Attackers intercept encrypted data 11001010. 
2. Attackers determine which bits to flip. 

A is different from Z in: 1st, 2nd, 4th, 5th, 6th bits: 
 Bits: 87654321 
 A: 01000001 
 Z: 01111010 
If 11001010 is the encrypted message for 01000001 and we 

flip all the bits that are different between A and Z, the result is 
a new encrypted message: 

 Bits: 87654321 
 Old encrypted message: 11001010 
 New encrypted message: 11110001 
If we send this new encrypted message and allow the 

receiver to decrypt it with the key, they will receive a Z and 
not an A. 

 Modified message: 11110001 
 Key: 10001011 
 Plain text: 01111010 “Z” 
Please note that the attackers did not need to know the 

secret key or even crack the key; they just used the encryption 
and decryption process as it was set up and allowed it to 
decrypt the message appropriately. 

Technology to mitigate this type of attack exists for 
streaming ciphers. One solution is bit scrambling. Bit 
scrambling reorders the data within each digit that is being 
encrypted; the receiver places the data back into the 

appropriate order after the data are decrypted. Because 
attackers do not know the bit-scrambling order, they do not 
know what bits to flip to manipulate the data. Even attackers 
who know the original message and what message they want 
to change it to still do not know which bit to flip in each digit. 

If we look at the same example as before and add bit 
scrambling, we can see how it stops man-in-the-middle 
attacks. For this example, we will swap each pair of bits, Bit 8 
with Bit 7, Bit 6 with Bit 5, and so on through each byte. 

 A: 01000001 
 A (scrambled): 10000010 
 Key: 10001011 
 Cipher: 00001001 
The attacker would still assume the same bits to flip to turn 

an A to a Z and would alter the cipher text to: 
 Old encrypted message: 00001001 

 New encrypted message: 00110010 
The receiving side would now receive the new encrypted 

message and use the key to decrypt it, resulting in: 
 Encrypted message received: 00110010 

 Key: 10001011 
 Plain text: 10111001 
This is not a Z and most likely will not be any matching 

command, and the message will be dropped. 

B.  Integrity 
Selecting the correct cryptographic solution for your 

system depends on the goals of your organization. Message 
integrity is very important for utility communications. 
Integrity is the process of ensuring that the message received 
was not altered in transit and that it was sent by an authorized 
user. Hashing, keyed hashing, and digital signatures 
accomplish this process. Hashing is computing the 
information in a one-way process, where the outcome is a 
fixed-length answer that cannot be reversed. If any part of the 
original message is altered, the hash changes. The process 
uses the following steps: 

1. The sender runs the data through a cryptographic hash 
algorithm and generates a message digest.  

2. The message digest is appended to the end of the data 
message and sent to the receiver.  

3. The receiver runs the data portion of the message 
through the same hash algorithm. If the received 
message digest and the calculated message digest 
match, then the receiver can be assured that the data 
were not altered. 

No matter how big or small the amount of information that 
is hashed, the answer, or digest, will always be the same 
length. This protects the original information from any 
manipulation because an unintended receiver of the hash 
digest cannot assume anything about the original information. 
The message digest strength is the probability of the data 
message being altered and the hash not changing. This 
strength is a function of the algorithm and length of the 
message digest. Other unique qualities of hashing, or a hash 
digest, are that the process is one way, and no one, given the 
hash digest, can reconstruct the original information. Any 
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change in the original information, no matter how small, 
makes a large impact on the hash digest. 

To accomplish integrity checking and sender 
authentication, a combination of hashing and asymmetric 
encryption is used. The sender of information hashes the 
message and encrypts the hash digest with a private key. 
Lastly, the sender appends the encrypted digest to the original 
message. Once the intended receiver gets the message, the 
receiver strips off the encrypted hash digest, rehashes the 
information, decrypts the received hash digest with the 
sender’s public key, and compares it to the digest they 
computed. If the two hash digests match, the receiver has 
authenticated the sender and verified that the information 
received was not altered in transit. This is illustrated in Fig. 3, 
where H represents the mathematical act of hashing, E is 
encrypting, D is decrypting, and CT is cipher text. 

 

Fig. 3. Information hashing process 

We can perform the hash function with or without a secret 
key. If we use a nonkeyed hash, then we can verify only data 
integrity. If we use a keyed hash, we can then verify both data 
integrity and authenticity, assuming the key is kept a secret. 

From a power engineering perspective, authenticating each 
message comes at the price of additional bandwidth 
requirements. For example, commonly used hash functions 
generate 160-bit hash. If we are protecting a DNP message 
that is 64 bits, then the DNP and hashed message we send is 
224 bits, and we have added 71 percent overhead. In many 
existing protection or SCADA communications channels, 
there is not enough available channel bandwidth to 
accommodate this much overhead. Fortunately, hashes can be 
truncated, so that we append only 120 bits instead of 160 bits. 
This truncation reduces the bandwidth requirements at the cost 
of slightly less security for detecting a message alteration.  

System availability in a utility communications structure is 
at the top of the priority list. We can accomplish this through 
redundant communications paths. These paths can use the 
same or different technologies. For example, we may have 
Ethernet for the main channel and a backup channel built on 
dial-up. 

C.  System Impact 
Let us evaluate two serial cryptographic protocols and their 

impact on protection communications links. 

    1)   Protocol Design 1 Objectives 
1. Minimal latency  
2. Minimal cryptographic overhead 

3. Defense against modification, splicing, replay, 
man-in-the-middle, forging, and reordering  

4. Maintain intercharacter timing 
5. NIST-approved Federal Information Processing 

Standard (FIPS) publications AES (FIPS 197 
Advanced Encryption Standard) encryption 

This protocol provides data confidentiality and session 
authentication but not individual message/frame 
authentication. A cryptographic frame consists of a header and 
the encrypted data. The header is 7 bytes and consists of start-
of-frame characters, a counter, and other data to keep the 
encryption/decryption process synchronized. The data length 
of the message, protected by the header, may be user defined. 
The user can configure the protocol frame to match the 
encryption frame structure. 

Matching frame structure minimizes delays that could arise 
between data frame size and encryption frame size. Typically, 
the data length is set to the maximum message length of the 
protocol. For example, data length would be 100 bytes for 
Modbus. When the encryption device receives the first byte of 
data to be protected, the frame header is sent followed by the 
encrypted byte. Thereafter, each plaintext byte is encrypted 
and sent on a byte-per-byte basis until the frame data length is 
exceeded. When the frame length is exceeded, a new frame 
header with an incremented counter is created, and the process 
repeats. Fig. 4 shows the session data and link header and the 
encrypted data layers for a single frame. 

 

 Fig. 4. Protocol Design 1 session and link layer  

This simple protocol is very efficient because it does not 
burden the existing SCADA channel with a lot of 
cryptographic overhead. The frame header is the only 
additional channel burden. The frame header is relatively 
small at seven bytes, and the user can tailor the frequency at 
which the header is sent, based on the data frame size. After 
the frame header is sent, each byte received by the 
cryptographic protocol is encrypted and sent. The encryption 
process, therefore, only incurs a one-byte delay. Referring to 
our original SCADA in Section II, the cryptographic overhead 
only consumes 7 percent of the remaining 11 percent. 

    2)  Protocol Design 2 Objectives 
1. Message integrity protection 
2. Defense against injection, modification, splicing, 

replay, man-in-the-middle, and reordering  
3. Authentication  
4. Confidentiality 
5. NIST-approved Federal Information Processing 

Standard (FIPS) publications AES (FIPS 197 
Advanced Encryption Standard) encryption 

This protocol considers message integrity and 
authentication the most important design goal, more so than 
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confidentiality. The rationale for this approach is that in a 
protection or SCADA system most messages between a 
SCADA master and slave are not secret. For instance, an open 
breaker in a SCADA system is known and expected, but it is 
extremely important to ensure that the message a remote 
device receives instructing it to open the breaker is from an 
authorized source. Fig. 5 shows the session and link layer.  

 

Fig. 5. Protocol Design 2 session transport and link layer 

This protocol must receive an entire frame before further 
processing can occur. If the frame passes all cryptographic 
tests, the system forwards the frame to the host. If the 
cryptographic tests fail, the message is discarded. The 
advantage to this mode is that each message is authenticated 
before the system passes the frame on to the host. The 
disadvantage is that the host must receive the entire frame 
before the host can authenticate the frame. This wait for the 
entire frame results in latency. In some applications this may 
not be acceptable.  

Refer back to our Modbus example in Section II. This 
results in 200 bytes plus 2 • 22 overhead bytes = 244 bytes. 
The total time for the request/response of the system in 
Section II is 2.28 seconds; recall that our polling rate was 
2.1 seconds. With this protocol addition, we have extended the 
required poll cycle by 0.18 seconds. In other words, we must 
either increase the polling rate or decrease the number of 
polled devices to meet the same 2.1-second requirement.  

Note that even if we remove the encryption and decryption 
functions of this protocol, the additional overhead remains the 
same. Removing encryption allows you to troubleshoot the 
communications channel, but it does not lower the additional 
bandwidth requirements and cryptographic overhead. 

We developed the test system in Fig. 6 to validate the 
actual impact of these two encryption schemes on SCADA 
traffic. 

 

Fig. 6. Test configuration 

SCADA traffic was generated on a test computer acting as 
a SCADA Master. A single DNP3 slave at the remote end was 
configured to respond to the SCADA master traffic. The two 
serial encryption devices, in turn, were placed between the 
SCADA master and the SCADA slave. These devices were 
configured for a data rate of 9600 bits per second, 8 data bits, 
no parity, and one stop bit. Protocol 1 was configured to use 
an initial value (IV) size of 3 bytes, AES-128 encryption, and 
to delay delimited framing (in other words, idle times between 
transmissions indicated frame boundaries). Protocol 2 was 
configured for ad-hoc framing (in other words, idle times 
between transmissions or a maximum frame size indicated 
frame boundaries), a maximum frame length of 64 bytes, 
AES-128 encryption, and HMAC-SHA1 with a 128-bit key. 
Recall that this protocol holds back an entire frame until it is 
fully received and passes all cryptographic validation tests. 

Three points within the communications systems were 
tapped and routed to an oscilloscope to measure the relative 
timing between the transmission of frames. The transmit lines 
of the SCADA master to the first encryption device, from the 
first encryption device to the second, and the second 
encryption device to the SCADA slave were captured.  

The DNP “Read Binary Inputs” command was used to 
elicit a response from the slave device (see Fig 7). DNP3 
requests are composed of a header of 10 bytes, followed by a 
data field containing the command. The first two bytes are a 
synchronism field composed of 0x05 and 0x64. The next byte 
is the length of the data portion of the frame, including the 
addresses and link layer field, but excluding any CRCs. The 
next byte is a link layer field indicating any link layer 
operations, such as frame check validation and link layer 
verification. The next four bytes are the destination and source 
addresses. The last two bytes of the header are a 16-bit CRC. 
The remainder of the frame is the actual request. The request 
is raw data, and a 16-bit CRC is inserted every 16-bytes. 

  

Fig. 7. Read binary inputs DNP3 frame 
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D.  Protocol 1 Data Latency 
Fig. 8 shows the latency of transmission of a “Read Binary 

Inputs” request introduced by Protocol 1 on a DNP3 frame at 
9600 bps, 8 data bits, no start bit, and 1 stop bit data rates.  

 

Fig. 8. Protocol 1 mode DNP3 latency 

The overall latency introduced by the protocol is roughly 
7 ms. This is to be expected because we added 7 bytes of 
header information. 

E.  Protocol 2 Data Latency 
Protocol 2 has significantly different results. Fig. 9 shows a 

latency of approximately 59 ms. 

 

Fig. 9. Protocol 2 DNP3 latency  

It is important to note that output from the encryption and 
decryption devices does not even begin until after the entire 
frame is received. The initial delay is caused by the holdback 
mode of operation, which encrypts blocks of 16 bytes. No 
output is generated until at least 16 bytes of data are received. 
Protocol 2 performs cryptographic tests on the received frame 
(i.e., authentication) before transmitting the decrypted results. 
This authentication creates output latency from the decryption 
device. 

IV.  PERSONNEL IMPACT 
After looking at the system impact of cryptography, our 

next consideration is the operational impact. In other words, if 
we use cryptography, what are the ongoing tasks needed to 
keep it running correctly? This is answered by investigating 
scalability and maintainability. Scalability refers to the 
readiness of a system to grow or shrink in an efficient manner. 
Maintainability focuses on what needs to be done to make 
sure the cryptographic technology continues to be used in 
compliance with your policies and procedures after initial 
rollout: how much financial and procedural overhead will this 
technology incur on operations? Evaluating the business 
impact of this additional procedural overhead is very 
important. 

The first step in investigating maintainability is 
understanding your operational needs. In a corporate 
networking environment, confidentiality usually holds the 
highest priority. Engineering access communication in control 
system confidentiality is important but may be trumped by 
availability, whereas in SCADA, communication 
authentication and integrity hold higher priority. 

You must understand the policies and procedural 
requirements of your organization to select the appropriate 
cryptography. Once you identify requirements and select 
technology, the next step is to test, set initial configurations, 
and plan deployment. An understanding of cryptography is 
necessary for analyzing and testing proposed solutions. 

You can leverage accredited third-party validation 
processes such as Federal Information Processing Standards 
(FIPS) validation to provide a level of assurance. In testing, 
focus on analyzing whether the cryptographic technology 
meets your objectives, and make sure the type of cryptography 
matches the type of communication it is applied to. For 
example, if you are applying the cryptography to an 
engineering access communications channel and only 
authenticate and integrity check the information, your 
cryptographic solution falls short. 

You should also apply confidentiality to protect passwords 
and settings being communicated across this channel. If you 
are using encryption on SCADA data, do not use ECB 
because it is vulnerable to replay or man-in-the-middle 
attacks. If attackers know when the trip command flies by, 
they can just record it and send it later to cause a trip 
whenever they want. 

The second half of maintainability covers all the additional 
requirements of operations to update and support the 
technology after deployment. These requirements include 
account and key change controls, event and log retrievals, 
updates and patch management, and periodic validation 
testing. This cost depends on the type of features the product 
includes. For example, using a product that has central 
authentication or includes software to do account updates and 
creation from a central location to all installed units will be 
faster than having to physically visit each installed unit. In-
band messaging can help, but the trade off is the use of 
bandwidth. Depending on your network, this increased 
bandwidth may be acceptable. 
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Scalability costs arise when your control system demands 
change and the system grows or reduces in size. Suddenly you 
must establish new trust relationships. Cryptography is about 
shared secrets and the trust that a secret has not been 
compromised. The cost of scalability is how much it will cost 
your organization to establish the new system trust as well as 
the cost of additional deployment. 

V.  CONTROL SYSTEM VS. CORPORATE IT 
Corporate IT systems now use a variety of solutions. There 

is a danger, though, in selecting solutions for a control system 
just because they have succeeded in the corporate 
environment. IT goals and objectives are predominantly 
ordered as confidentiality, integrity, and availability. In a 
control system, it is the reverse: availability, integrity, and 
then confidentiality. The procedural requirements on how 
work gets done are very different as well. Control system 
equipment demands very long life cycles, and installation of 
this equipment is often in remote installations where little to 
no remote telecommunication is available. Many installations 
have high levels of customization, resulting in elevated levels 
of testing before patching or changes are implemented. Even 
with all of these differences, cryptographic solutions can and 
should be applied to control systems to provide higher 
availability, confidence in data integrity, and confidentiality of 
sensitive information. 

VI.  RECOMMENDATIONS 
Securing real-time protection, SCADA, and engineering 

links is practical and prudent. As we have shown, if we choose 
cryptography correctly, even bandwidth-limited serial 
channels can be cryptographically secured. 

Ultimately, you want cryptography to enable effective and 
efficient operations and communication. This is accomplished 
by allowing information to be placed in easily accessible 

locations for authorized users who have confidence that the 
information is accurate and private. Cryptography lowers the 
potential for mistakes or for work to be done on compromised 
information. It also allows an organization to understand 
clearly who is accessing information and how that information 
is being used. Cryptography can be applied to utility 
communication networks without impacting system design 
and operations. CIA has an appropriate place in utility 
communications. 

• Confidentiality protects sensitive data like passwords. 
• Authentication ensures control commands are from an 

authorized source. 
• Availability can be addressed with backup or 

redundant communications channels. 
Stream ciphers are better applied to real-time protection 

data, while block ciphers are better applied to engineering 
access data. Cryptography enables you to use more 
interproduct communication, centralize data, and access 
equipment from anywhere, speeding up work force efficiency. 
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