
Cryptography: A Tutorial for Power Engineers

David Whitehead and Rhett Smith
Schweitzer Engineering Laboratories, Inc.

Published in
Sensible Cybersecurity for Power Systems: A Collection of

Technical Papers Representing Modern Solutions, 2018

Originally presented at the
35th Annual Western Protective Relay Conference, October 2008

1

Cryptography: A Tutorial
for Power Engineers

David Whitehead P.E., and Rhett Smith GSEC CISSP, Schweitzer Engineering Laboratories, Inc.

Abstract—Safeguarding power system communications
channels from unauthorized use or access is becoming
increasingly important. Internal and external utility
organizations have suggested many cryptographic solutions as
the proper ways to secure substation communications links.
However, many proposed solutions are not practical for
substation applications because of communications channel
limitations, data size and/or data rate requirements, intelligent
electronic devices (IED) capabilities, or similar infrastructure
constraints.

This paper is a cryptographic tutorial that addresses methods
for protecting communications systems that will enable
protection engineers to work more effectively with other
departments within a utility.

This paper discusses common cryptographic techniques that
are applicable in various substation communications systems.
The paper then describes the benefits and limitations of these
methods. Specific topics include:

1. Overview of communications channels used in power
systems.

2. Review of cryptographic protocols and how they work.
3. How cryptography can impact monitoring, control,

and protection communications.
4. Differences between substation communications

systems and corporate information technology (IT)
systems.

5. Cryptographic impact to operations.

I. INTRODUCTION
Cryptography—just the sound of the word can bring as

much confusion as the science behind it brings to the
information that it is trying to protect. Cryptography is the
science of hiding information. This science has expanded far
beyond the goal of keeping the data confidential: now it
includes checking integrity and authenticating both the data
and the sender. As with all engineering tasks, you must weigh
the tradeoffs before selecting the appropriate cryptographic
technology for your application. When selected correctly,
cryptography can enable an organization to do many tasks
more efficiently and effectively. In a way, cryptography can
help you do twice the work in half the time.

II. POWER SYSTEM COMMUNICATION
Electric power system communications are diverse, to say

the least. Fig. 1 shows typical electric utility communications
links.

2

Fig. 1. Electric utility communications links

Some examples of electric utility communications links
include:

• Radio frequency (RF)
• Dedicated fiber
• Ethernet
• Public telephone
• Telecommunications networks

These communications links are used to perform three
primary functions:

• Real-time protection
• SCADA
• Engineering access

Real-time protection communication transfers information
used to control the electric power system. Real-time protection
data payloads range from a few bytes for pilot protection to a
few hundred bytes for line current differential protection. Data
exchanged between protection devices are very timely:
devices must receive new data in milliseconds. Real-time
protection is typically point-to-point, and no request is
necessary to send protection information to the receiving end.
Even IEC 61850 GOOSE is a subscription architecture where
devices receive control data without request.

The time value of the data is short lived because the value
of a current measurement is valid only for that particular
instant.

The timing for SCADA communication is less strict:
update rates range from hundreds of milliseconds to minutes.
Usually, SCADA communication consists of a poll/response
format. Typical electric utility SCADA protocols are DNP3,
Modbus®, and IEC 61850.

Engineering access provides retrieval of event reports,
access to fault locations, change settings, and other similar
activities. Timing is generally not critical; if a relay responds
to a request in 1.05 seconds instead of 1.00 seconds, the user
would be hardly aware of the 50 ms delay. This is in contrast
to real-time protection delay, where 50 ms could have a severe
impact on power system stability. The time value of the data is
longer lived because settings, event reports, and the like can
have a long life.

Many utilities are moving communications systems to
Ethernet/IP or SONET. However, there are and will continue
to be many electric utility communications links that are serial
based. For the purpose of this paper, serial networks have data
rates from 300 bits per second (bps) to 115,200 bps. Most
serial networks in electric utility systems operate between
1200 bps and 9600 bps.

Serial communications system protocols (such as Modbus,
DNP3, and MIRRORED BITS®) and architectures were designed
many years ago. These systems were developed to be reliable
and dependable but not necessarily secure in a cryptographic
sense. At the time of development for most serial protocols in
common use in the United States, utilities assumed that these
protocols were integrated into trusted networks—additional
data security was never a concern.

As we rely more and more on automation, it is imperative
that we secure all utility communications. However, adding
cryptographic security to existing communications links is a
challenge. The largest challenge is finding the additional
bandwidth that the cryptographic functionality needs.
Cryptography will consume some bandwidth and add latency
to a communications link. The impact of bandwidth

3

consumption or data latency will vary according to the
communications link and the type of cryptography selected.
For example, engineering access communications links are not
time sensitive, so adding cryptographic mechanisms does not
adversely impact the use of these data. However, when we add
cryptography to real-time protection or SCADA data,
bandwidth and data latency are major concerns.

Cryptographic algorithms and schemes generally require
additional channel bandwidth in order to keep frames
synchronized and to provide the basis for frame security. The
additional bandwidth is for items such as initial values and
counters. These additions can adversely impact bandwidth-
limited communications systems. Engineers have designed
their real-time protection and SCADA communications
systems to take full advantage of the available
communications channel bandwidth. For example, in a
SCADA system, assume that there is a master that polls slave
devices. A typical baud rate for an installed system is
9600 bps, using 8 data bits, no parity, and 1 stop bit (9600 bps,
8, N, 1). For a Modbus poll/request session, an analog value
request is 8 bytes, and a slave response is 192 bytes. The total
number of bytes per poll/response is 200 bytes. If we use the
baud rate stated above, the total single poll/response time for
the transaction is 208 ms. Allowing for some processing
delay, the master could poll 9 slaves in about 2.1 seconds.
This would leave approximately 228 ms of total idle time
(required bandwidth: 0.208 x 9 = 1.872 seconds; idle time:
2.1 – 1,872 = 0.228 seconds or about 11 percent of the total
channel bandwidth in an idle state). In order to provide data
security and not disrupt the existing polling-cycle scheme, the
cryptographic overhead must use less than 11 percent of the
available channel bandwidth. The following sections discuss
cryptography and how it can be applied to protect these
communications links.

III. CRYPTOGRAPHY
Let us start by identifying the goals of cryptography:

confidentiality, integrity, and availability (CIA).
1. Confidentiality: Concealing information from

unintended viewers. Encryption scrambles
information by using known algorithms and secret
keys to make information incomprehensible to
unintended users. It is best to use encryption
algorithms approved by the National Institute of
Standards and Technology (NIST) to ensure
mathematical robustness. There are two types of key
structures in encryption algorithms: symmetric key
and asymmetric key. In symmetric key cryptography,
the two parties who want to exchange information
securely use the same algorithm and the same secret
key to encrypt and decrypt. Symmetric cryptography
is computationally efficient, but it requires that each
sender/receiver pair has a unique, secret key. The
operational difficulty in this is how the sender and
receiver initially agree on a secret key. If the
communications channel is untrusted, passing a
symmetric encryption key needs an out-of-band

transport solution. Asymmetric key cryptography uses
two keys: public and private. In this system, the public
key is known to everyone. The private key is a secret,
and the private key owner never shares it with anyone.
If two parties need to exchange information securely,
the sender uses the receiver’s public key to encrypt the
message, and the receiver uses the private key to
decrypt the message. Asymmetric cryptography is
much more computationally burdensome, but it does
not have the initial key distribution problem that
symmetric keys have. The receiver can send a public
key to everyone without worry of it being
eavesdropped. Modern cryptographic systems use a
hybrid approach that uses asymmetric key
cryptography to send symmetric keys. This solves the
initial symmetric key exchange problem and allows
the use of symmetric encryption for the information
transfer, leveraging the speed of symmetric key
cryptography.

2. Integrity: Ensuring information has not been tampered
with or altered. Integrity checking is usually
accomplished by running information through a
cryptographic algorithm, called a hash, and appending
the hash to the end of the data message. When the
receiver gets the message from the sender, the receiver
reruns the data portion of the message through the
same hash algorithm to create a calculated hash. If
both the calculated and received hashes match, the
receiver can be assured the data were not altered. The
hash algorithm can be used with or without a secret
key.

3. Availability: Ability to use information when it is
needed or desired. When you need a resource, you
want it to be there, a requirement similar to that for
power system protection communications channels.
The most common cyberthreat is a Denial-of-Service
(DoS) attack, where a third party disrupts or otherwise
makes the communications media unavailable.

Confidentiality conceals and protects information from
anyone who is not the intended receiver. This keeps the data
confidential or indecipherable, scrambled in such a way that
no one except the intended receiver can understand the
information. Past methods used physical concealment of a
message. One ancient Roman example involved shaving the
head of a messenger, tattooing the message on the head, and
then letting the hair grow back. The intended receiver knew to
shave the hair of the messenger to read the message. A faster
method of physical encoding was the scytale, a message
written on a long strip of cloth that, once wrapped around a
specific pole of the correct diameter, would reveal the
message. More recent encryption techniques used alphabetic
replacement methods to conceal the message. In a simple
example, the sender replaces every A with a Z, and the
intended receiver knows to replace all Zs with As. Alphabetic
replacement took on many forms, each more complicated than
the next, to protect against cracking or unintended receivers
breaking the decryption method and understanding the

4

transmitted information. Today, cryptography is based on
mathematical permutation and substitution.

It is important to investigate many factors before selecting
the most appropriate cryptographic solution for your system.
The most important first step is to select NIST-approved
algorithms, but knowing that a solution claims 256-bit
Advanced Encryption Standard (AES) encryption does not
ensure that it will protect your information correctly.

Implementation architectures are just as important. There
are many different encryption implementation methods.
Identifying the most appropriate method for your network is
critical.

A. Confidentiality
Confidentiality, or encryption, hides the content of a data

message from unauthorized viewers. For the purposes of this
discussion, we will assume that the data exchanged in a real-
time protection system, SCADA system, or engineering access
are digital. Encryption of digital data will be kept simple in
this example: a data message is XOR with a secret key only
known by the sender and receiver of the message. For
example, if we want to encrypt the ASCII character for 1 with
a secret key represented by an ASCII character for 7, the result
would be:

ASCII Char Secret Key Result
00110001 00110111 00000110

The most important part of the above encryption process is
using key material that can keep the data secure. Two
examples to illustrate the importance of selecting the right
encryption architecture to generate this key material are
electronic codebook (ECB) and counter mode (CTR).

ECB is very fast, and much of the encryption process can
be precomputed. The drawback is that for every given block
of information there is one encrypted output. This is bad if the
information you are sending is often repeated, as in a control
system command response environment.

CTR mode seeds the key algorithm with a count that
changes, which results in a different encryption key. Even if
information is sent repeatedly, the encrypted output is
different as long as the count does not repeat.

Table I shows examples of implementation methods and a
few of their advantages and disadvantages.

A stream or block cipher denotes how much data are
processed at any one time, which results in a requirement of
how much data need to be received before calculations can
start. The second column in Table I shows whether any
calculations can be done in advance of receiving data. The
more calculations that can be done in advance, the lower the
impact cryptographic functions have on your real-time
processing. Advance calculations speed up the encryption or
decryption process. Lastly, does an error in one of the sent
messages cascade and corrupt following messages? If a mode
has “No” in the Cascading Errors column, there will be
corruption in the current message, but these errors will not
carry over to the next message.

TABLE I
COUNTER MODE IMPLEMENTATION EXAMPLES

Modes Stream/Block
Cipher

Advanced
Work

Cascading
Errors

Electronic Code
Book

Block Yes No

Output
Feedback

Stream Yes Yes

Cipher Feedback Stream Partial No

Cipher Block
Chaining

Block Partial No

Counter Stream Yes No

Another concept that must be investigated can be summed
up in the term key space. Key space is all the possible keys the
system can have. If an alphabetic encryption system has a
code word to encipher and decipher messages, the key space is
all possible letter combinations that code word may be. A
four-letter code word number of possibilities is easier to break
than a ten-letter code word number of possibilities. For data,
the key space is 2n possibilities where n is the number of bits
long the key is. For example, if you have a 128-bit key, there
are 2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456
possibilities. It would take a computer with a 2.5 GHz
processor 4.316 x 1021 years to guess the correct key if the
processor could have a new guess on every clock cycle and
guessed the correct key on the last guess.

Computer processing power doubles every two years.
Applying this fact to control system equipment that may be
installed for ten years shows that the key space must be strong
enough to protect against computers running 80 GHz
processors. Looking again at the 128-bit key example, we see
that it would take an 80 GHz computer 1.349 x 1020 years to
break the key under the same assumptions. This shows us that
selecting a key space of 128 bits or greater is appropriate.

Let us dig a little deeper into the structures of stream
ciphers and block ciphers. Stream ciphers encrypt or decrypt
information one digit at a time, while block ciphers combine
multiple digits to perform encryption functions on all
information at once. In real-time systems, it may not be
acceptable to wait for larger blocks of data on a serial line to
collect before encryption functions can start, whereas
engineering access may be tolerant of the additional latency.
This makes stream ciphers attractive for control system
applications. However, stream ciphers may be susceptible to
man-in-the-middle attacks. These types of attacks occur when
attackers know the original message that is being sent (such as
a DNP3 trip command) and also know what they want to
change the message to (such as a DNP3 close command). As
illustrated in Fig. 2, these attacks are simple to perform if the
stream cipher does not include some sort of man-in-the-middle
attack prevention.

5

Fig. 2. Man-in-the-middle attack

Let us take a closer look at how someone might accomplish
this attack. We use a small data string to show the attack more
clearly, but we can scale the principles of the process to any
size of information. Suppose we want to send the ASCII letter
A, which in binary is 01000001, and the attacker wants to
change it to the ASCII letter Z, which in binary is 01111010.
The original sender encrypts 01000001 with a secret key
10001011. For example purposes, we will XOR the data to
encrypt and decrypt, so the cipher text would be:

 A: 01000001
 Key: 10001011
 Cipher Text: 11001010
Under this attack, we assume that the attackers know the

original message being sent, A, the message they want to
send, Z, and that the attackers need only to capture the
transmitted cipher text, 11001010. Here are the steps to
successfully achieve this attack:

1. Attackers intercept encrypted data 11001010.
2. Attackers determine which bits to flip.

A is different from Z in: 1st, 2nd, 4th, 5th, 6th bits:
 Bits: 87654321
 A: 01000001
 Z: 01111010
If 11001010 is the encrypted message for 01000001 and we

flip all the bits that are different between A and Z, the result is
a new encrypted message:

 Bits: 87654321
 Old encrypted message: 11001010
 New encrypted message: 11110001
If we send this new encrypted message and allow the

receiver to decrypt it with the key, they will receive a Z and
not an A.

 Modified message: 11110001
 Key: 10001011
 Plain text: 01111010 “Z”
Please note that the attackers did not need to know the

secret key or even crack the key; they just used the encryption
and decryption process as it was set up and allowed it to
decrypt the message appropriately.

Technology to mitigate this type of attack exists for
streaming ciphers. One solution is bit scrambling. Bit
scrambling reorders the data within each digit that is being
encrypted; the receiver places the data back into the

appropriate order after the data are decrypted. Because
attackers do not know the bit-scrambling order, they do not
know what bits to flip to manipulate the data. Even attackers
who know the original message and what message they want
to change it to still do not know which bit to flip in each digit.

If we look at the same example as before and add bit
scrambling, we can see how it stops man-in-the-middle
attacks. For this example, we will swap each pair of bits, Bit 8
with Bit 7, Bit 6 with Bit 5, and so on through each byte.

 A: 01000001
 A (scrambled): 10000010
 Key: 10001011
 Cipher: 00001001
The attacker would still assume the same bits to flip to turn

an A to a Z and would alter the cipher text to:
 Old encrypted message: 00001001

 New encrypted message: 00110010
The receiving side would now receive the new encrypted

message and use the key to decrypt it, resulting in:
 Encrypted message received: 00110010

 Key: 10001011
 Plain text: 10111001
This is not a Z and most likely will not be any matching

command, and the message will be dropped.

B. Integrity
Selecting the correct cryptographic solution for your

system depends on the goals of your organization. Message
integrity is very important for utility communications.
Integrity is the process of ensuring that the message received
was not altered in transit and that it was sent by an authorized
user. Hashing, keyed hashing, and digital signatures
accomplish this process. Hashing is computing the
information in a one-way process, where the outcome is a
fixed-length answer that cannot be reversed. If any part of the
original message is altered, the hash changes. The process
uses the following steps:

1. The sender runs the data through a cryptographic hash
algorithm and generates a message digest.

2. The message digest is appended to the end of the data
message and sent to the receiver.

3. The receiver runs the data portion of the message
through the same hash algorithm. If the received
message digest and the calculated message digest
match, then the receiver can be assured that the data
were not altered.

No matter how big or small the amount of information that
is hashed, the answer, or digest, will always be the same
length. This protects the original information from any
manipulation because an unintended receiver of the hash
digest cannot assume anything about the original information.
The message digest strength is the probability of the data
message being altered and the hash not changing. This
strength is a function of the algorithm and length of the
message digest. Other unique qualities of hashing, or a hash
digest, are that the process is one way, and no one, given the
hash digest, can reconstruct the original information. Any

6

change in the original information, no matter how small,
makes a large impact on the hash digest.

To accomplish integrity checking and sender
authentication, a combination of hashing and asymmetric
encryption is used. The sender of information hashes the
message and encrypts the hash digest with a private key.
Lastly, the sender appends the encrypted digest to the original
message. Once the intended receiver gets the message, the
receiver strips off the encrypted hash digest, rehashes the
information, decrypts the received hash digest with the
sender’s public key, and compares it to the digest they
computed. If the two hash digests match, the receiver has
authenticated the sender and verified that the information
received was not altered in transit. This is illustrated in Fig. 3,
where H represents the mathematical act of hashing, E is
encrypting, D is decrypting, and CT is cipher text.

Fig. 3. Information hashing process

We can perform the hash function with or without a secret
key. If we use a nonkeyed hash, then we can verify only data
integrity. If we use a keyed hash, we can then verify both data
integrity and authenticity, assuming the key is kept a secret.

From a power engineering perspective, authenticating each
message comes at the price of additional bandwidth
requirements. For example, commonly used hash functions
generate 160-bit hash. If we are protecting a DNP message
that is 64 bits, then the DNP and hashed message we send is
224 bits, and we have added 71 percent overhead. In many
existing protection or SCADA communications channels,
there is not enough available channel bandwidth to
accommodate this much overhead. Fortunately, hashes can be
truncated, so that we append only 120 bits instead of 160 bits.
This truncation reduces the bandwidth requirements at the cost
of slightly less security for detecting a message alteration.

System availability in a utility communications structure is
at the top of the priority list. We can accomplish this through
redundant communications paths. These paths can use the
same or different technologies. For example, we may have
Ethernet for the main channel and a backup channel built on
dial-up.

C. System Impact
Let us evaluate two serial cryptographic protocols and their

impact on protection communications links.

 1) Protocol Design 1 Objectives
1. Minimal latency
2. Minimal cryptographic overhead

3. Defense against modification, splicing, replay,
man-in-the-middle, forging, and reordering

4. Maintain intercharacter timing
5. NIST-approved Federal Information Processing

Standard (FIPS) publications AES (FIPS 197
Advanced Encryption Standard) encryption

This protocol provides data confidentiality and session
authentication but not individual message/frame
authentication. A cryptographic frame consists of a header and
the encrypted data. The header is 7 bytes and consists of start-
of-frame characters, a counter, and other data to keep the
encryption/decryption process synchronized. The data length
of the message, protected by the header, may be user defined.
The user can configure the protocol frame to match the
encryption frame structure.

Matching frame structure minimizes delays that could arise
between data frame size and encryption frame size. Typically,
the data length is set to the maximum message length of the
protocol. For example, data length would be 100 bytes for
Modbus. When the encryption device receives the first byte of
data to be protected, the frame header is sent followed by the
encrypted byte. Thereafter, each plaintext byte is encrypted
and sent on a byte-per-byte basis until the frame data length is
exceeded. When the frame length is exceeded, a new frame
header with an incremented counter is created, and the process
repeats. Fig. 4 shows the session data and link header and the
encrypted data layers for a single frame.

 Fig. 4. Protocol Design 1 session and link layer

This simple protocol is very efficient because it does not
burden the existing SCADA channel with a lot of
cryptographic overhead. The frame header is the only
additional channel burden. The frame header is relatively
small at seven bytes, and the user can tailor the frequency at
which the header is sent, based on the data frame size. After
the frame header is sent, each byte received by the
cryptographic protocol is encrypted and sent. The encryption
process, therefore, only incurs a one-byte delay. Referring to
our original SCADA in Section II, the cryptographic overhead
only consumes 7 percent of the remaining 11 percent.

 2) Protocol Design 2 Objectives
1. Message integrity protection
2. Defense against injection, modification, splicing,

replay, man-in-the-middle, and reordering
3. Authentication
4. Confidentiality
5. NIST-approved Federal Information Processing

Standard (FIPS) publications AES (FIPS 197
Advanced Encryption Standard) encryption

This protocol considers message integrity and
authentication the most important design goal, more so than

7

confidentiality. The rationale for this approach is that in a
protection or SCADA system most messages between a
SCADA master and slave are not secret. For instance, an open
breaker in a SCADA system is known and expected, but it is
extremely important to ensure that the message a remote
device receives instructing it to open the breaker is from an
authorized source. Fig. 5 shows the session and link layer.

Fig. 5. Protocol Design 2 session transport and link layer

This protocol must receive an entire frame before further
processing can occur. If the frame passes all cryptographic
tests, the system forwards the frame to the host. If the
cryptographic tests fail, the message is discarded. The
advantage to this mode is that each message is authenticated
before the system passes the frame on to the host. The
disadvantage is that the host must receive the entire frame
before the host can authenticate the frame. This wait for the
entire frame results in latency. In some applications this may
not be acceptable.

Refer back to our Modbus example in Section II. This
results in 200 bytes plus 2 • 22 overhead bytes = 244 bytes.
The total time for the request/response of the system in
Section II is 2.28 seconds; recall that our polling rate was
2.1 seconds. With this protocol addition, we have extended the
required poll cycle by 0.18 seconds. In other words, we must
either increase the polling rate or decrease the number of
polled devices to meet the same 2.1-second requirement.

Note that even if we remove the encryption and decryption
functions of this protocol, the additional overhead remains the
same. Removing encryption allows you to troubleshoot the
communications channel, but it does not lower the additional
bandwidth requirements and cryptographic overhead.

We developed the test system in Fig. 6 to validate the
actual impact of these two encryption schemes on SCADA
traffic.

Fig. 6. Test configuration

SCADA traffic was generated on a test computer acting as
a SCADA Master. A single DNP3 slave at the remote end was
configured to respond to the SCADA master traffic. The two
serial encryption devices, in turn, were placed between the
SCADA master and the SCADA slave. These devices were
configured for a data rate of 9600 bits per second, 8 data bits,
no parity, and one stop bit. Protocol 1 was configured to use
an initial value (IV) size of 3 bytes, AES-128 encryption, and
to delay delimited framing (in other words, idle times between
transmissions indicated frame boundaries). Protocol 2 was
configured for ad-hoc framing (in other words, idle times
between transmissions or a maximum frame size indicated
frame boundaries), a maximum frame length of 64 bytes,
AES-128 encryption, and HMAC-SHA1 with a 128-bit key.
Recall that this protocol holds back an entire frame until it is
fully received and passes all cryptographic validation tests.

Three points within the communications systems were
tapped and routed to an oscilloscope to measure the relative
timing between the transmission of frames. The transmit lines
of the SCADA master to the first encryption device, from the
first encryption device to the second, and the second
encryption device to the SCADA slave were captured.

The DNP “Read Binary Inputs” command was used to
elicit a response from the slave device (see Fig 7). DNP3
requests are composed of a header of 10 bytes, followed by a
data field containing the command. The first two bytes are a
synchronism field composed of 0x05 and 0x64. The next byte
is the length of the data portion of the frame, including the
addresses and link layer field, but excluding any CRCs. The
next byte is a link layer field indicating any link layer
operations, such as frame check validation and link layer
verification. The next four bytes are the destination and source
addresses. The last two bytes of the header are a 16-bit CRC.
The remainder of the frame is the actual request. The request
is raw data, and a 16-bit CRC is inserted every 16-bytes.

Fig. 7. Read binary inputs DNP3 frame

8

D. Protocol 1 Data Latency
Fig. 8 shows the latency of transmission of a “Read Binary

Inputs” request introduced by Protocol 1 on a DNP3 frame at
9600 bps, 8 data bits, no start bit, and 1 stop bit data rates.

Fig. 8. Protocol 1 mode DNP3 latency

The overall latency introduced by the protocol is roughly
7 ms. This is to be expected because we added 7 bytes of
header information.

E. Protocol 2 Data Latency
Protocol 2 has significantly different results. Fig. 9 shows a

latency of approximately 59 ms.

Fig. 9. Protocol 2 DNP3 latency

It is important to note that output from the encryption and
decryption devices does not even begin until after the entire
frame is received. The initial delay is caused by the holdback
mode of operation, which encrypts blocks of 16 bytes. No
output is generated until at least 16 bytes of data are received.
Protocol 2 performs cryptographic tests on the received frame
(i.e., authentication) before transmitting the decrypted results.
This authentication creates output latency from the decryption
device.

IV. PERSONNEL IMPACT
After looking at the system impact of cryptography, our

next consideration is the operational impact. In other words, if
we use cryptography, what are the ongoing tasks needed to
keep it running correctly? This is answered by investigating
scalability and maintainability. Scalability refers to the
readiness of a system to grow or shrink in an efficient manner.
Maintainability focuses on what needs to be done to make
sure the cryptographic technology continues to be used in
compliance with your policies and procedures after initial
rollout: how much financial and procedural overhead will this
technology incur on operations? Evaluating the business
impact of this additional procedural overhead is very
important.

The first step in investigating maintainability is
understanding your operational needs. In a corporate
networking environment, confidentiality usually holds the
highest priority. Engineering access communication in control
system confidentiality is important but may be trumped by
availability, whereas in SCADA, communication
authentication and integrity hold higher priority.

You must understand the policies and procedural
requirements of your organization to select the appropriate
cryptography. Once you identify requirements and select
technology, the next step is to test, set initial configurations,
and plan deployment. An understanding of cryptography is
necessary for analyzing and testing proposed solutions.

You can leverage accredited third-party validation
processes such as Federal Information Processing Standards
(FIPS) validation to provide a level of assurance. In testing,
focus on analyzing whether the cryptographic technology
meets your objectives, and make sure the type of cryptography
matches the type of communication it is applied to. For
example, if you are applying the cryptography to an
engineering access communications channel and only
authenticate and integrity check the information, your
cryptographic solution falls short.

You should also apply confidentiality to protect passwords
and settings being communicated across this channel. If you
are using encryption on SCADA data, do not use ECB
because it is vulnerable to replay or man-in-the-middle
attacks. If attackers know when the trip command flies by,
they can just record it and send it later to cause a trip
whenever they want.

The second half of maintainability covers all the additional
requirements of operations to update and support the
technology after deployment. These requirements include
account and key change controls, event and log retrievals,
updates and patch management, and periodic validation
testing. This cost depends on the type of features the product
includes. For example, using a product that has central
authentication or includes software to do account updates and
creation from a central location to all installed units will be
faster than having to physically visit each installed unit. In-
band messaging can help, but the trade off is the use of
bandwidth. Depending on your network, this increased
bandwidth may be acceptable.

9

Scalability costs arise when your control system demands
change and the system grows or reduces in size. Suddenly you
must establish new trust relationships. Cryptography is about
shared secrets and the trust that a secret has not been
compromised. The cost of scalability is how much it will cost
your organization to establish the new system trust as well as
the cost of additional deployment.

V. CONTROL SYSTEM VS. CORPORATE IT
Corporate IT systems now use a variety of solutions. There

is a danger, though, in selecting solutions for a control system
just because they have succeeded in the corporate
environment. IT goals and objectives are predominantly
ordered as confidentiality, integrity, and availability. In a
control system, it is the reverse: availability, integrity, and
then confidentiality. The procedural requirements on how
work gets done are very different as well. Control system
equipment demands very long life cycles, and installation of
this equipment is often in remote installations where little to
no remote telecommunication is available. Many installations
have high levels of customization, resulting in elevated levels
of testing before patching or changes are implemented. Even
with all of these differences, cryptographic solutions can and
should be applied to control systems to provide higher
availability, confidence in data integrity, and confidentiality of
sensitive information.

VI. RECOMMENDATIONS
Securing real-time protection, SCADA, and engineering

links is practical and prudent. As we have shown, if we choose
cryptography correctly, even bandwidth-limited serial
channels can be cryptographically secured.

Ultimately, you want cryptography to enable effective and
efficient operations and communication. This is accomplished
by allowing information to be placed in easily accessible

locations for authorized users who have confidence that the
information is accurate and private. Cryptography lowers the
potential for mistakes or for work to be done on compromised
information. It also allows an organization to understand
clearly who is accessing information and how that information
is being used. Cryptography can be applied to utility
communication networks without impacting system design
and operations. CIA has an appropriate place in utility
communications.

• Confidentiality protects sensitive data like passwords.
• Authentication ensures control commands are from an

authorized source.
• Availability can be addressed with backup or

redundant communications channels.
Stream ciphers are better applied to real-time protection

data, while block ciphers are better applied to engineering
access data. Cryptography enables you to use more
interproduct communication, centralize data, and access
equipment from anywhere, speeding up work force efficiency.

VII. BIOGRAPHIES
David Whitehead, P.E. is the vice president of Research and Development at
Schweitzer Engineering Laboratories, Inc. Prior to joining SEL he worked for
General Dynamics, Electric Boat Division, as a combat systems engineer. He
received his B.S.E.E. from Washington State University in 1989, his M.S.E.E.
from Rensselaer Polytechnic Institute in 1994, and is pursuing his Ph.D. at the
University of Idaho. He is a registered professional engineer in Washington
and Maryland and a Senior Member of the IEEE. Mr. Whitehead holds seven
patents with several others pending. He has worked at SEL since 1994 as a
hardware engineer, research engineer, and chief engineer/assistant director
and has been responsible for the design of advanced hardware, embedded
firmware, and PC software.

Rhett Smith is the Development Manager for Security Solutions in Research
& Development at Schweitzer Engineering Laboratories, Inc. In 2000, he
received his B.S. degree in Electronics Engineering Technology, graduating
with honors. Before joining SEL, he was an application engineer with AKM
Semiconductor. Mr. Smith has his GSEC, GIAC Security Essentials
Certification and is a Certified Information Systems Security Professional.

© 2008 by Schweitzer Engineering Laboratories, Inc.
All rights reserved.

20081020 • TP6345-01

	CoverPage_20181009
	6345_CryptographyTutorial_dew-rs_20081020

